![](/rp/kFAqShRrnkQMbH6NYLBYoJ3lq9s.png)
DeepSeek
🎉 DeepSeek-R1 is now live and open source, rivaling OpenAI's Model o1. Available on web, app, and API. Click for details.
deepseek-ai/DeepSeek-R1 - GitHub
DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks. To support the research community, we have open-sourced DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1 based on Llama and Qwen.
下载 DeepSeek-R1
DeepSeek-R1 基础模型. 纯强化学习训练的基础模型
DeepSeek-R1 - 革命性的专注推理语言模型
体验 DeepSeek-R1,这是 AI 推理能力的一次突破,通过创新的强化学习方法在数学、编程和复杂问题解决方面实现卓越表现。 DeepSeek-R1 下载模型 博客 下载应用 试用 DeepSeek-R1
DeepSeek-R1 - Revolutionary Reasoning-Focused Language Model
Experience DeepSeek-R1, a breakthrough in AI reasoning capabilities, achieving exceptional performance in mathematics, programming, and complex problem-solving through innovative reinforcement learning.
深度探秘 Deepseek 大模型:DeepSeek-R1 模型要点精彩呈现
Jan 29, 2025 · DeepSeek-R1的论文里边介绍了两个模型,分别为:DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一个没有使用监督微调(SFT)作为初步步骤,通过大规模强化学习(RL)训练的模型。
deepseek-r1
DeepSeek-R1. ollama run deepseek-r1:671b Distilled models. DeepSeek team has demonstrated that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models.
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via ...
Jan 22, 2025 · DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors.
DeepSeek-R1 Release | DeepSeek API Docs
Jul 25, 2024 · 🔄 DeepSeek-R1 is now MIT licensed for clear open access. 🔓 Open for the community to leverage model weights & outputs. 🛠️ API outputs can now be used for fine-tuning & distillation
人工智能 - DeepSeek R1重磅开源!一文读懂训练方法与RAG应用 …
Feb 2, 2025 · DeepSeek R1重磅开源!一文读懂训练方法与RAG应用搭建. DeepSeek R1学习方法概述. DeepSeek R1的特点在于使用强化学习(RL)进行后期训练。一般来说,大规模语言模型的开发要经过以下几个步骤: 预训练:利用大规模语料库创建一个 “预测下一个单词” 的模型。
- Some results have been removed